

朋体下にAGM－88 HARM を1発装着した，イタリア空軍のトーネードIT－ECR（Photo：Alex van Noye）

1980年代後半に西ドイツ（当時）では，敵の防空網やC3（指挥•統制•通信）施設に対する，虽夜門全天候での攻慗力を持った機体の装复の必要性を感じ，トーネードIDSをペースにした電子絾聯㑯察型の装備を決定した。これがトーネードECR で，ECRは電子絾阴攧察の頭文字である。トーネ ードECRに求められたのは，
全天候および星夜雨の侵攻絾術值察能力
－前壞および破嶧による敵防空網の制圧（SEAD）

- 敵のC3システムの妨害•破壊
- 他の攻繋機のための低リスクの侵攻 －ほほリアルタイムのデータリンク送信を使用し ての，後続攻緊機のための傎察と目標指示 \diamond 電子情報収集（ELINT）データ統合の高い能力

ドイツ空軍では，このトーネードECRを35機装備することを決め，IDS の量産の最終分の発注を ECRに切り替えた。このため，まず2機のIDSを ECR 仕樣に改造し，1988年8月18日に初飛行させ た。その後1989年10月26日には量産初号機も初飛行し，1990年5月21日から実働部隊（レックフェ ルド基地のJBG32）への配備が閉始されている。

トーネードECRでは，敵のレーター信号をビン ボイントで識別•表示する軍波幅射源位凒把㨟シ ステム（ELS），デジタル式の迺用データ・インタ ーフェイス（ODIN）データリンクが機内に新たに装備され，また機首下而には前方監視赤外線 （FLIR）が，その後方には浾外線画像システム （IIS）が張り出し装備された。これらにより，固定武装の 27 mm機関砲 2 鬥は廃止された。またSEAD

用の搭載兵器として，AGM－88 HARM 高速対し ーター・ミサイルの搭載能力が追加されている。さ らに主翼外翼部には，新规開発のECM ボッドを備える。

ELSは拷威信号を受動方式で受信し，継続的な捕捉•滪別•精密な位置標定機能を有する。これ らの情報は前•後席乗員に示され，目標を選択し た後にHARMにより攻繋が行われる。ODINデ ータリンクは，UHF／VHF および HF 周波数带 を利用して，僋察情報をほほりアルタイムで後続攻撃機や地上の指揮所に送信する。また，他機の ODIN データリンクによる情報メッセージを受信 することもでき，その情報は電子データバスを経由 して乗員の表示装置に映し出される。FLIRと IIS は，ともに赤外線を使用した傊察システムで，IIS は水平線から水平線までの広域をカバーするとと もに，ビンボイントの俱察にも活用できる。また IISは，ELS の電子情報の記録に使用することも可能。

トーネードECRは，極力 IDSからの変更点を少なくしており，ECR用として追加された以外の器材はIDSのものをそのまま備えている。従って低空飛行の能力や，阻止•攻繋用の兵装搭載能力 などは，IDS と同等とされている。前•後席コク ピットの表示装俻関連も基本的にIDSと同じだ が，一部はソフトウェアの変更などでECR用に変更してある。

イタリア空軍でもこうしたSEAD作戦機を裴備 することとなり，トーネードIDSを16機改造する

ことか決定された。この機体もトーネードECRと呼ばれ（ドイツ機と区別する際には非公式にトーネ ードIT－ECR），1992年7月20日に試作改造初号機か初飛行した。その後量産改造作業が行われて，第50航空団第155飛行隊（ビアセンザ基地）が ECRによる初度作戦能力を獲得した。イタリア空 TのIT－ECR も，主兵装はAGM－88 HARMで ある。

Data	Tornado EGR
全蝠	13.91 m （後退角 25 度） 8.60 m （後退角67度）
全長	16.72 m
全高	5.95 m
主煾面精	26.6 m （後退角25度）
基本空虚重量	$13,890 \mathrm{~kg}$
運用自重	14.091 kg
最大維陸重量	$\begin{aligned} & 20.411 \mathrm{~kg} \text { (クリーン) } \\ & 27.950 \mathrm{~kg} \text { (機外装㣁時) } \end{aligned}$
エンジン	ターボユニオンRB199－34R Mk103 （ドライ40．48kN，A／B71．50kN） $\times 2$
聮料容量	5．842L（機内）+1.500 L （㙼楮）$\times 2$
最大マッハ数	マッハ2．2
最大水平速度	800kt＋（クリーン）
実用上界限度	$15.240 \mathrm{~m}+$
必要滑走路長	900 m 以下
着陸滑走距維	370 m
	約2，100nm
兵装颖棫外最大指匌量	5.805 kg 以上
乗員	2名
保有数 ドイツ空軍：トーネードECR（29機） イタリア空軍：トーネードIT－ECR（16機）	

ディジョン基地に所在する，フランス空軍 EE02．002（02．002訓練飛行隊）所属のアルファジェットE（Photo：Joris van Boven）

1960年代にフランスと西ドイツ（当時）は，それ ぞれ将来の高等練習機の研究を開始した。1968年 にはそれを統合化することで話し合いが始めら れ，1969年7月に共同で開発•生産することで合意 し，ブレゲー 126 とドルニエ P． 375 をたたき台に して共同でまとめ上げられた機体が，アルファジェ ットである。主翼は有翼配選の後退翼とし，エンジ ンは佣体両側面に付けられた。操綐席はタンデム複座で，後席を一段高く配㯰して，後席からの前方視界を確保している。前•後席とも射出座席を備え，フランスはマーチンベーカーAJRM4を，西 ドイツはステンセルS－III－S3を装備することとな った。

フランス空軍ではアルファジェットを，ロッキー ド T－33の後継練習機として装備する計画だった が，西ドイツはパイロット删練をアメリカで行って いることから，アルファジェットをフィアット G91R／3の後継軽攻繋機と位置づけていた。この ため，基本設計は同じであるものの，両国向けの機体は搭載装備品が大きく異なっている。また外形的にも，フランス空軍向けアルファジェットEが機首が丸みを带びているのに対し，西ドイツ空軍向けアルファジェットAは先鏳に尖らせる形状と なった。

アルファジェットの開発は，1972年2月に両国政府から正式に承認された。試作初号機はフラン スで組み立てられ，1973年10月26日に初飛行し た。2号機は西ドイッ製で，1974年1月9日に初飛

行している。フランス空軍向けの量産初号機は 1977年11月4日に進空し，1978年から訓練部隊で実用就役した。西ドイツ空軍向け量産初号機の初飛行は，1978年4月12日であった。

アルファジェットは，開発した两国以外にも多数輸出が行われ，軽攻撃機として使用している国も多い。カタールとコートジボワールのアルファジェ ットC，トーゴのアルファジェットTは，フラン ス空軍向けのアルファジェットEと基本的に同じ もの。ナイジェリア空軍のアルファジェットNは， アルファジェットAの輸出型である。またポルト ガル空官のアルファジェット A は，ドイツ空軍か ら退役した機体が渡されたものだ。エジブトでは，練習機型アルファジェットMS1が26機，現地組 み立てきれている。

アルファジェットの攻尛力を強化したのが，アル ファジェットNGEAで，エンジンをパワーアップ型のラルザック04－C20に変更，機首先端にはレー ザー測距装祖を収めた。航法／攻撃システムとし て慣性プラットフォームを備え，操繸席にはへッ ド・アップ・デイスブレイを持つ。航法装置は，サ ジェム製のユリス81慣性航法装置。兵装としては，爆弾類の対地攻繋兵装と，マトラR．550マジック2 AAMを携行できる。この機体は，カメルーン空軍か購入したほか，エジブトでもアルファジェット MS2として組み立てられた。なおNGEAの名称 は，後にアルファジェット2に変更された。

アルファジェットをさらに本格的な攻撃機に発

展させる計画が，ランサー（後にアルファジェット 3に改称）であった。しかし，このアルファジェット 3に対する発注はなく，アルファジェットNGEA の試作機を改造して試作機を作り飛行試験は行っ たものの（レーダーは未裴備），量産には至らず，ア ルファジェットは1992年に生産が終了した。

Data	Alpha Jot 2
全輻	9.11 m
全長	11.75 m
全高	4.19 m
主㽞面耫	17.5 m
運用自重	$3,493 \mathrm{~kg}$
クリーン䁛陸重量	$4,990 \mathrm{~kg}$
エンジン	SNECMA／チュルボメカ・ラルザッ $\text { ク04-C20 }(14.12 \mathrm{kN}) \times 2$
燃料容量	$\begin{aligned} & 1,900 \mathrm{~L}(\text { 機内) })+ \\ & 450 \mathrm{~L} / 31 \mathrm{~L}(\text { 增槽 }) \times 2 \end{aligned}$
最大水平マッハ数	マッパ 0.85
実用上界限度	14，630m
敬陸滑走距離	335m
着陸滑走距離	680 m
兵装颖機外最大抬載量	2，500 kg
乗員	2名

保有数

ベルギー空軍：アルファジェットB（29機）
カメルーン空軍：アルファジェットMS2（3機）
エシブト空軍：アルファジェットMS2（12機），アルファジェッ トMS1（24 機）
フランス空軍：アルファジェットE（75機） ナイジェリア空軍：アルファジェットN（17機） ボルトガル空軍：アルファジェット（9機） カタール空軍：アルファジェット（6機） トーゴ空軍：アルファジェット（3機）

インド空軍第40航空団第9森行隊に所属するミラージュ2000H（Photo：Dassault Aviation－V．Almansa）

オランタ，ベルキー，デンマーク，ノルウェーの NATO 4 ヶ国の新戦溯機計画で，ミラージュF1／ M53を提采したが，同じヨーロッパの国という有利な地位にありながら，ダッソーはアメリカの F－16に敗れた。フライ・バイ・ワイヤ，ブレンデ ッド・ウイング／ボディという新技術を駆使した F－16の前には，エンジンを大推力のものにしたと はいっても，ミラージュFlはもはや目式機でしか なかった。このことは，一つの大きな商戦に敗れた だけでなく，その後のミラージュF1の翰出販売に ついても，それが難しくなることを示していた。

そこでタッソーは，次の絾网機では，機体構成 を同社伝䖻の無尾翼デルタに戻し，それにフライ・ バイ・ワイヤ採維装置や最新の電子機器，最新の空力技術を盛り込む，新世代のデル夕翼葴閒機を 1開発することとした。ダッソーでは，こうした新世代デルタ楒戦明機の研究を，デルタ1000の計画名 で1972年に開始してはいた。しかし，ミラージュ F1／M53計画が優先され，デルタ1000の優先度は低いものであった。しかもこのデルタ1000は双発 の戦眑機であり，フランス空再が双発機に興味が ないことか明らかになった1975年12月には，研究作業は中止されることとなった。

他方フランス空軍は1976年3月に，ミラージュ F1C に代わる新戦懻機の開発要求をまとめた。 1982年に実用化できる，単発の新迎撃戦剖機か俅 められたのである。これに向けてダッソーが開発す ることとしたのが，ミラージュ2000であった。夕 ッソーは，大面積のデルタ翼を使って翼面荷重を低くし，主翼前縁には空戦機動時に自動的に展張 して運動性を高めるスラットを装滞，飛行操綂装䀾はフライ・バイ・ワイヤとするなどの新技術を盛 り运んだ。無尾翼デルタは，すでに見慣れていた から，目新しさは感じられなかったが，ミラージュ 2000は完全に新世代の無尾翼デルタ機であった。
エンジンは，すでに開発済みのSNECMA M53 ターボファンを使うこととした。M53は，バイバ ス此が 0.32 と小さく，ターボジェットに近いター ボファン・エンジンであったが，機体の開発に充て られる期䦨か智いことなどから，新エンジンの開発 は行われなかった。
こうして作られたミラージュ2000は，初号機が 1978年3月10日に初飛行した。飛行試験では，特
 い䝵動性を有することが実証されている。量産型 の製造に際しても，試作機から大きな変更は加え

られず，唯一垂直安定板の形状が简素化されたく らいで，試作機の段階から完成度が高かったこと を窺わせる。

フランス空而はミラージュ 2000 の量産型をミラ ージュ 2000 C の制式名称で採用し，その量産型初号機は1982年11月20日に初飛行した。エンジン はアフターパーナー時推力 88.26 kN の M52－5で， 1983年4月からフランス空莗への引き渡しが開始 され，7月には初度作諓能力を獲得している。また量㹍型の最初の 37 機は，機首にトムソン・CSF の RDM レーターを装偳していた。
量産 38 号機以降では，このレーダーがRDIに変更されている。RDIは，新しい腺間型フェイス ブレート・アンテナを持ち，ルックダウン／シュー トタウン能力を高めたもの。もともとミラージュ 2000は最初からRDIを装侑する計画だったが，レ ーターの閉発か運れたため初期の機体には，能力 を限定した開発型のRDMが使われたのである。工 ンジンは，M53－P2（アフターバーナー時 95.1 kN ） に変更された。最大推力の増加とともに，燃費率 や信賴性か淌上しているという。また1995年以降引き渡しの機体は， 98.1 kN の M53－P20とするこ とも可能となっている。

ミラージュ 2000Cの主武装は，セミアクティブ・ レーダー誘導のマトラ・シュペル530Dと，赤外線誘導の R．550マジック2で，各2発を主翼下に搭械 する。シュペル530Dを内側の，マジック2を外㑡 のハードポイントに各 1 発ずつ装着するのが显通 となっている。シュペル530Dは，R． 530 シリース の最新型で，特にシュートダウン能力が高められ， RDIレーダーとの組み合わせでその威力を発押す るものである。このほかに，空気取入れ口部胴体左右に，DEFA554 30mm機関砲を固定装備してい る。

ミラージュ 2000 C の胴体を 19 cm 延ばして裎座型としたのが，ミラージュ 2000Bで，量産初号機 が1983年8月7日に初飛行した。複座化により機内燃料搭載量が110L 減らされており，また機関砲 は外された。フランス空軍はミラージュ2000Bを 32 機発注しており， 15 号機目以降はRDIレーダー を装備するようになった。またエンジンは全機 M53－5。そのほかに，サジェム慣性プラットフォー厶2基，AHV－12電波高度計2基，カラーのヘッ ド・ダウンCRT表示装置，セイバー妨害システム による統合対抗手段システム（ICMS），セルバル・ レーダー警戒受信機（RWR），スパイラル自動チや フ／フレア・デイスペンサーなどを備えている。

ミラージュ 2000 C の輸出型は，ミラージュ 2000 Eと呼ばれている。ミラージュ2000Eの袙座型 （RDM レーターを装備し M53－P2エンジンを使用 したもの）がミラージュ2000D だか，複座聀緗爆繋型のミラージュ 2000D とは違うものである。な お戰㬏爆繋型ミラージュ2000D の輸出型はミラー ジュ 2000 S と名付けられているから，フランス空軍以外のミラージュ 2000Dは，ミラージュ2000E の複座型を示している。輸出仕様はいずれも後期量産型のM53－P2エンジンとRDM レーターの組 み合わせとなっているが，多用途性を持たせるた めに対地攻撆兵装の搭載も可能にしてある。ただ し機体内部に，大きな変更は加えられていない。
攻撃用兵装には，自由落下の通常爆弾のほかに， マトラ・アーマト対レーター・ミサイル，AS30 Lレーザー誘導対地攻慗ミサイルなどが挙げられ ており，AS30Lを使用する場合にはトムソン －CSFのATLISレーザー目標指示ボッドを携行す る。ペルー空軍ではこの仕様のミラージュ2000を装備しており，BGL1000 1．000lb レーザー誘筫爆弾も使用している。

アラブ首長国連邦は，戦明機型と複座型に加え て，戦術傊察能力を付加したミラージュ2000RAD も購入した。この機体は複座型で，胴体中心線に傎察ポッドを携行するようになっており，ボッド内 には，CORIマルチ・カメラ，SLAR2000側視し ーダー，ハロルド長䟢離傎察カメラか収められて いる。レーターなどは通常の褑座型と同じで，空対

空ミサイルの携行能力もそのまま残されている。な おアラブ首長国速邦のミラージュ2000は，マジッ ク2の代わりにAIM－9P サイドワインターを装備 し，スバイラル・チャフ／フレア射出システムを標準装偳している。

ミラージュ $2000 \mathrm{C} / \mathrm{E}$ についてタタッソーは，1986年から戰闗能力の向上研究を開始した。1987年に はまず自社資金で，ミラージュ2000－3を開発して いる。ミラージュ 2000－3は，コクピットにラファ一ルの技術を持ち込み， 5 基の多機能 CRT表示装椔を装備した。この操縦席システムは，発達型パ イロット・システム・インターフェイス（APSI）と呼ばれており，研究機はミラージュ2000Bの初号機を改造して作られ，1998年3月10日に初飛行し た。さらに，これにマトラの新世代䌘ちっ放し式 AAMであるMICAの携行能力を付与してミラー ジュ2000－4とし，1992年1月9日にドローンに対 して誘導射繋を実施，成功を収めている。

このミラージュ 2000－3／－4での成功を踏まえて開発されたのがミラージュ2000－5で，ミラージュ 2000－3／－4はミラージュ2000－5開発のための，試験用の機種という位置付けであった。ミラージュ 2000－3／－4の新しい特幑をすべて盛り込み，機首の レーダーは，トムソン．CSFが新たに開発した RDYに変更され，搭載電子機器も更新された。ま

ず，ミラージュ2000－4のレーターをRDYに換装 してミラージュ2000－5の試作型とし，1988年5月 に初飛行させた。
その後新電子機器類の追加搭載などの作業を行 って，完全なミラージュ2000－5仕様となり，1990年1月24日に初飛行している。その作業と並行し て単座の改修機（ミラージュ2000の初号機を使用）も作られ，こちらは1991年4月27日に初飛行 した。
ミラージュ2000－5が装備するRDYレーダー は，多機能のドッブラー・レーダーで，機体前方の あらゆる高度域にいる目標を捕捉するために，自動電波管理（低•中•高のパルス繰り返し周波数）機能を有している。ルックダウン能力はRDMより も高められ，また多目標同時処理機能も有するよう になった。RDYは， 24 個の目標を同時に探知し， その中の8目標を追跡し続けることが可能になっ ている。

ミラージュ2000－5は，各秝の空対地ミサイルや精密誘導兵器を搭載して，対地攻繋に使用するこ とも可能な，多用途荿吻機となっている。攻撃用兵器の目標捕捉•誘導器材としては，レーザー目標指示ボッド，前方監視赤外線ボッドなどを携行す る。これにより，AM39エグゾセやアパシュ・ス タンドオフ兵器ディスペンサーといった，自律誘導
／航法機能を持つ兵器のほかに，AS30L レーザー誘導ミサイルやレーザー誘導爆弾などによるビン ポイント攻撃も行える。

ミラージュ2000－5で大きく変わったのが，コク ピットのレイアウトだ。ヘッド・アッブ・ディスブ レイのすぐ下にヘッド・レベル・ディスブレイがあ り，主計器船左右に多機能表示装临，中央下にへ ッド・ダウン・デイスブレイを持つ， 5 表示装临夕 イブになっている。ヘッド・アッブ・ディスブレイ とヘッド・レベル・ディスブレイは単色で，操縦，航法，目標捕捉およひひ射繋に使用される。

多機能表示装置とヘッド・ダウン・ディスブレイ は，ともにカラーCRTが用いられている。多機能表示装㯰はあらゆるセンサーや機体システムの管理情報を主として表示し，また水平状況などの表示にも使用できる。ヘッド・ダウン・デイスブレイ は，线術状況の把握に用いられる。このため航法 や新威などに関する各㮔の情報がまとめて表示さ れ，バイロットか迅速な状況把握／判断を行うこ とを可能にする。航法／攻撃システムの操作や兵装の選択などは，スロットル・レバーと操䋶桿に手 を瞋いたまま行える，HOTAS 概念か採用されて いる。

自己防御用の電子機器は，続合型対抗手段シス テム（ICMS）として，完全にまとめられている。ミ ラージュ2000B／C／Eの初期型は，タレスのセル バル・レーター警戒受信機を装備していたが，そ の後の能力向上型ではこの ICMSが導入されてお り，まずレーダー䇾戒装置や電子対抗手段（ECM）機器を統合化したICMS Mklが装備された。ミ ラージュ2000－5では妨害機能を自動化したMk2 に変わり，さらに今日では，レーダー警戒受信機，妨害装㯰，スピラル（またはエクレア）・チャフ／フ レア・ディスペンサー，電子支援手段（ESM），絾術状況認識および目標指示装置を完全に統合化し

た，Mk3にアップグレードが行われている。
フランス空軍では，保有するミラージュ2000 Cのうち，これまでに 37 機をミラージュ2000－5に改修した（制式名称はミラージュ2000－5F）。最初 の量産改修契約は1993年11月25日に与えられ， その改修初号機は1996年2月26日に再初飛行し た。1999年3月に，ミラージュ2000－5による最初 の実戦飛行隊（EC1／2）か編成を完結した。またミ ラージュ2000－5は，多用途戦閒機として輸出販売 も目指しており，各国に說明を行った。その結果， カタール空軍と台湾空軍が発注を行い，カタール は単座型2000－5EDA 9機と複座型2000－5DD A 3機を，台湾は単座型2000－5Ei 48機と複座型 2000－5Di を 12 機受領した。なおエンジンは，ミラ ージュ 2000Cと同じM53P－2。

1999年に発表されたミラージュ 2000－5の発展型が，ミラージュ $2000-5 \mathrm{Mk} 2$ である。この機体で は，モジュラー化電子機器，レーザー・ジャイロ式管制航法装置，航空機ミサイル・データリンク機能 の拡張，タモモル・レーザー目標指示ポッドおよび航法用前方監視赤外線（FLIR）装置を装備し，ざら にRDYレーダーの能力向上を行って，空対地作戦能力が高められている。RDY レーダーの能力向上では，空対地搜索•追跡での多目標処理機能，高解像度のドップラー・ビーム・シャープニング・モ ードの追加，地上の移動目標の捜素•追跡機能な どが盛り込まれている。このミラージュ2000． 5 Mk 2 は，キリリシの追加購入向け提案機として提示されたもので，単座型と複座型計 15 機を受注し た。さらにアラブ首長国連邦も同仕様の機体を20機発注し，これらはミラージュ2000－9と呼ばれる。 また同国か渦去に採用したミラージュ2000EAD／ RAD／DADは，総称してミラージュ2000－8とも呼ぶ。ミラージュ2000－9では，タモクル・ポッド はシェハブ・ポッドと呼ばれているが，全く同一の

オランジュ基地をタキシングする，フランス空軍 EC02．005所属のミラージュ 2000B（Photo：Alex van Noye）

ものである。
なおダッソーは2007年11月26日に，ギリシャ空軍に対してミラージュ 2000－5 Mk2の最終15号機を納入した。これによりミラージュ 2000 の生産 はすべて終了しており，その総生産機数は試作機 も含めて626機であった。

またタッソーでは，ミラージュ2000の開発と並行して，デルタ1000をさらに発展させた双発の大型無尾翼デル夕戦䦥機，シュペルミラージュ 4000 も独自に開発した。シュペルミラージュ 4000 は， ミラージュ2000のスケールアッブ型で，エンジン はM53を2基装備し，空気取入れ口上部には全遊動式のカナード翼を備えていた。試作機は，1979年3月9日に初飛行している。

しかし，最初に記したようにフランス空軍は双発 の戦關機には関心がなく，シュペルミラージュ 4000 は翰出のみを目的に販党が行われることとな った。ただ，当然機体は高級•高価になり，唯一 サウジアラビアのみか㩪客として候補に挙げられ たが，F－15の採用により瞵入はされず，シュペル ミラージュ 4000 ブログラムもそれで幕を閉じた。

Data	Mirage 20006
全幅	9.13 m
全長	14.36 m
全高	5.14 m
主翼面積	41.0 m
空虚重量	7.500 kg
クリーン睢陸重量	10.860 kg
最大離陸重量	17.000 kg （過荷）
エンジン	$\begin{aligned} & \text { SNECMA M53-P } \\ & (\text { (トライ } 64.3 \mathrm{kN}, ~ A / B 95.1 \mathrm{kN}) \times 1 \end{aligned}$
然料容量	$\begin{aligned} & 3,978 \mathrm{~L}(\text { 機内 })+1,300 \mathrm{~L}(\text { 增措 }) \times 1 / \\ & 1,700 \mathrm{~L}(\text { 增槽 }) \times 2 \end{aligned}$
最大水平速度	マッハ2．2
海面上昇率	$17.060 \mathrm{~m} / \mathrm{min}$
実用上昇限度	16.460 m
兵装類機外最大搭載量	$6,200 \mathrm{~kg}$
作戦航続距離	$1,000 \mathrm{~nm}(\mathrm{Hi}-\mathrm{Hi}-\mathrm{Hi})$ 800 nm （Hi－Lo－Hi，阻止攻撃） 650 nm （ $\mathrm{Hi}-\mathrm{LO}-\mathrm{Hi}$ ，対地攻撃）
フェリー航続距離	$1,800 \mathrm{~nm}$
固定武装	DEFA554 30mm機関砲 $\times 2$ 門 （弹数各 125 発）
乗員	1名

保有数

エジプト空軍：ミラージュ 2000EM（13 機），ミラージュ 2000BM（3 機）
フランス空軍：ミラージュ 2000C（35機），ミラージュ2000B （6機）
ギリシャ空軍：ミラージュ 2000－EGM－3（16機），ミラージ ב 2000BGM－3（3機），ミラージュ2000－5Mk2（25 機） インド架軍：ミラージュ 2000 H （38 嘰），ミラージュ2000TH （9機），ミラージュ2000 1／T1（2 機）
ベルー空軍：ミラージュ 2000P（7機），ミラージュ 2000DP（2機）
カタール空軍：ミラージュ 2000－5EDA（12機），ミラージュ 2000－5DDA（3機）
台捣空軍：ミラージュ 2000－5Ei（45 楥），ミラージュ 2000－ 5Di（9機）
アラブ首長国連邦空軍：ミラージュ 2000－9RAD（43機）， ミラージュ 2000－9DAD（16機）

ミラージュ2000N／D Mirage 2000N／D

イラク上空を飛行するミラージュ 2000D。2014年8月に開始された有志国連合によるイスラム国（DAESH）攻撃の先陣を切ったのは，ミラージュ2000D であった（Photo：US Air Force）

フランス空軍は，核攻撃力として弾道ミサイルの ほかに有人爆繋機，ミラージュIVを装備していた。 このミラージュVは，試作機が1959年6月17日に初飛行し，1968年3月には完全な戦力化に到遠し たが，それも1980年代に入って25年が経過すると機体の旧式化などが進み，後継機が必要となる。他方，こうした大型の㷥眫機とそのための部隊の保持には経費かかかか，新型機の開発•装備は望め ない。そこでフランス空軍は，ミラージュ2000の発展型をその後䌙とすることとした。

ミラージュIVについても，1970年代後半に，核弾䫄裴備可能の巡航ミサイルであるASMP（空対地長距離ミサイル）を携行するミラージュIV Pへの改造を行って核戦力として保持を続けることが決 められ，このASMP の装価か叮能であれば大型の爆䌘機である必要はなくなったのである。こうして フランス空而は，1979年にミラージュ2000の侵攻攻繋型ミラージュ2000P 2機の試作契約をタッソ ーに与えた。なお機体名称はすぐに，核攻繋力付与を意味するミラージュ2000Nに変えられた。

ミラージュ2000Nは，ミラージュ2000Bを基本にした複座機で，低空飛行を可能にするために機体構造が強化され，また敵地に侵攻することか ら防御器材を充実させている。固定武装は持たず，

機外の 5 ヶ所のハードポイントに，最大で 6.300 kg の兵装頪を搭載できる。後席は，兵装システム操作士官（WSO）が搭乗し，兵装投下／航法システム の専従操作員となる。機首レーダーは，タッッソーエ レクトロニクとトムソン－CSF が共同で開発した， アンテロープ5に換わった。そのほかに，サジェム憒性プラットフォーム2基，AHV－12電波高度計2基，カラーのヘッド・ダウンCRT表示装临，セイ バー妨害システムによる統合対抗手段システム （ICMS），セルバル・レーダー警戒受信機（RWR）， スビラル自動チャフ／フレア・ディスペンサーなど を備えている。

こうしたミラージュ 2000N の初号機は，1983年 2月3日に初飛行した。

フランス空軍ではミラージュ 2000 N を 75 機発注しているが，このうち最初の31機はASMP携行專用型で，ミラージュ $2000 \mathrm{~N}-\mathrm{K} 1$ と呼ばれるも の。32号機以降は，通常兵器の携行も可能とした複合任務型で，ミラージュ $2000 \mathrm{~N}-\mathrm{K} 2$ と呼ばれて いる。ミラージュ 2000N－K2で追加された推行可能兵器としては，AS30L レーザー誘渃対地ミサイ ル，レーザー誘導爆弾（ともに ATLISレーザー目標指示ポッドを合わせて携行），マトラ・アパシュ・ スタンドオフ・デイスペンサー兵器，AM39エグ

ゾセ対艦ミサイル，マトラ・アーマト対レーダー・ ミサイル，マトラ・デュランダール滑走路攻撃兵器 などで，ほかに通常筷弾やロケット弾ももちろん装備できる。2000N－K2の航法／攻撆システムに自己防御器材を統合化させたのが2000N－K2－4Cで， 2000年に改修作業が着手されている。

ミラージュ2000Nではさらに，タレス製レコNG傊察ボッドや能力向上型の ASMPアメリオール を携行でき，自己防御雨子機器をアッブグレードす るさらなる能力向上も進められている。これがミラ ージュ2000N－K3と呼ぶもので，EC1／4，2／4，3／4 の 3 個飛行隊に配備されている 50 機か改修対象と なる。初度作戦能力の獲得は2007年。

ミラージュ 2000 N の主兵装である ASMPは， 1978年に全規模開発が開始された，核弾頭も装備可能な巡航ミサイル。発射直後は固燃プースター によりマッハ 2 程度まで加速され，その後はラムジ エットによる巡航飛翔に入る。このため本体兩側面 には，矩形の空気取入れ口がある。誘導装置は慣性航法装置で，事前にブログラムが可能なコンピ ューターに目標位坥や経路を記憶させ，地形参照航法を併用しているとみられる。また，限られた回避機動などをとることも可能なようだ。弾頭には，通常弾頭のほかに 150 kT または 300 kT の核弾頭

を装侢できる。射程は，低高度からの発射で約 80 km ，高々度からの発射では約 250 km とされている。

ミラージュ 2000Nかこの ASMPを搭㭜する場合には，胴体中心緗下のハードポイントに1発を装備する。そして主翼下内側に2．000L 增槽を各1本，外僓にマジック2 AAMを各1発搭載する。このミ ラージュ2000Nは，1988年7月に初度運用能力を睃得，フランス空軍の核戦力航空機の主力になっ た。

このミラージュ2000N から核攻繋能力を外し，
 が，ミージュ2000N（N プライムと読む）である。名称の混同を避けるために，後にミラージュ 2000Dに改称された。ミラージュ2000Dは， ASMPの搭械能力がなくなった以外はミラージュ 2000N－K2と同じで，また核攻繋力がないため輸出も可能とされ，ミラージュ 2000Sの名称で潜在的な碩容への説明が行われた。ただミラージュ 2000Sに叫味を示した国はなく，1機も輸出されて いない。ミラージュ2000Dの初号機は，1991年2月19日に初飛行した。この機体は，ミラージュ 2000N の試作初号機を改修したものであった。

ミラージュ 2000D は機首に，アンテローブ5－3C を裴備している。アンテロープ5は，低空飛行およ び対地攻紧向けのレーダーで，地形追随／地形参照機能を有し，また高性能のグラウンド・マッビン グ・モードを有するもの。ミラージュ2000Nの低空衔攻ミッションに合わせて開発されており，亜音速ならは対地高度 60 m を維持しての自動操祣飛行能力を有しているとされる。ミラージュ2000Dの アンテロープ5－3C は，さらに地形参照機能が強化

されていると伝えられる。
航法裴置はULISS52P 慣性航法裴置で，これを 2基装備して航法精度を高めているほか，現在では全地球測位システム（GPS）の追加搭械も行われ た。なお操䖻席の風防には金のコーティングが行 われており，これによりステルス性が高められてい るとされる。
搭裁兵装も，ミラージュ2000N－K2の通常兵器 に準じており，現在実用中および閒発中の攻撃兵裴はほとんどすべてを携行できる。ただ，ミラージ ュ 2000 D 量産型の最初の少数機（ 10 機程度といわ れる）は，兵装システムの統合化に関守る閉発作業 が運れて，レーザー誘導兵器とマジック2 AAM の装備しか行えず，R1N1L 仕㥞と呼ばれる機体に なっている。その後，その他の攻繋兵装，さらにア バシュの携行能力や自己防御用電子機器の完全装備化が行われた R2仕様に機体が改良され， R1N1L もR2仕様にアップグレードされることに なっている。2000年にまず 2 機がR2价様への改修 を受け，2002年末までに20機か改修された。これ らの機体には，タレスNG改良型出子絾システム も装傏された。
モジュラー兵器シスデムや傎察ポッドの携行能力などを追加するのがR3で，1996年6月に計画が いったん中止されたが，1999年に後活した。この R3は，MIDS／リンク16データリンクを俩えるな どして，完全なNATOインターオペラビリティを有する。R3仕樣機では搭載可能兵裴も追加されて おり，GBU－12／－16／－24ペイウウェイII／IIIレー サー誘導爆弾のほか，アバシュAP，スキヤルブ EG（2003年から）も携行可能になった。2004年6

月に18機分の改修を終えてナンシー基地のEC3 に配備が行われ，2006年内に䠈下の 3 個飛行隊が全79機の改修作業を終えている。

フランス空軍ではその後も，ミラージュ2000D の攻撃力と生存性をさらに高めるための能力向上改修を計画した。しかしラファールの調達計画が優先されることとなって，この計画は椆上げとなっ ている。

フランス空軍では，1993年4月からミラージュ 2000Dによる楝用試験を実施，合わせて実戦部隊 への装備を進めて，同年7月29日に最初の飛行隊 （ $\mathrm{EC} 1 / 3$ ）の初度作職能力到起を発表した。しかし この時点で $\mathrm{EC} 1 / 3$ には 6 機しか配備されておら ず，同隊が機数を完全に揃えたのは1994年3月31日のことであった。

Data	Mirage 2000N
全楅	9.13 m
全長	14.55 m
全高	5.15 m
主䚓面積	41.0 m
空虚重量	7.600 kg
クリーン離陸重量	$10,960 \mathrm{~kg}$
最大雠陸重量	$17,000 \mathrm{~kg}$
エンジン	SNECMA M53－P2 （ドライ $64.3 \mathrm{kN}, ~ \mathrm{~A} / \mathrm{B} 95.1 \mathrm{kN}$ ）$\times 1$
㷦科容量	
最大水平速度	マッハ2．2
低空侵攻速度	$600 \mathrm{kt} / 60 \mathrm{~m}$
㖑䦭行動半径	500 nm （Lo－LO－LO）
兵装疑梫外最大搭㖪量	6.000 kg
乗員	2名

保有数

フランス笁軍：ミラージュ 2000D／N（計62嘰）

フランス空軍 SPA167所属の ミラージュ 2000N （Photo：Alex van Noye）

スロベニア空軍のPC－9フドウルニク。高等練習㙨PC－9の能力向上型PC－9Mに各種装備を追加した強化型。スロベニアはPC－9運用国の中で唯一，攻撃機としてこれを運用している （Photo：Alex van Noye）

ターボブロッブ高等練習機PC－7で成功を収め たピラタスは，PC－7の基本設計を跨觼して，より高性能で幅広い諈練を行える新世代機の開発を 1982年5月に開始した。1982～83年にかけては， PC－7を使って新型機の空力構成要素の試験が行 われ，続いて2機の前量産型の製造に入った。その初号機は1984年5月7日に，2号機も同年7月20日 に初飛行した。これがPC－9で，1985年9月19日 に曲技機としての型式証明を取得している。
PC－9の機体形状は，その開発経続からも分かる ように，PC－7とよく似ているが，タンデム複座の操紸席は前席と後席の段差がより大きく $(15 \mathrm{~cm})$ されて，後席からの前方視界が大幅に改善されて いる。座席は，前後席ともマーチンベーカー Mk11A 射出座度。主翼は 25% 璆弦で 1 度の後退角を有し，1度の取り付け角を付けて低翼配置で胴体下部に付けられている。降淆装临取り付け部か ら外側の外翼部では，7度の上反角が付けられてい る。主翼には片侧3ヶ所のハードボイントがあり，内側と中央は 250 kg ，外側は 110 kg の容量を有し，軽武装を搭載することが可能である。

エンジンはブラット\＆ホイットニー・カナダ PT6A－62で，最大出力 857 kW を 708 kW に蔵格 して使用している。それでもターボプロッブ練習機 としてはバワフルなものであり，初等訓練から高等訓練までPC－91機種で教育できるとされている。 しかし初めて航空機を操緱する学生にとっては現実的には扱えるものではなく，本機を導入している国のほとんどが，より小型の機体で初等訓練を受

ける課程を設けている。その反面，軽攻繋機や近接支援などの用途には十分使用に耐える機体であ る。ただ，これまでに16ヶ国に261機が眅党され ている（ほかに民間向けとして 15 機）が，攻繋機と して運用していることか確認されているのは，スロ ベニアだけである。
基本型となっている訓納型がPC－9で，オースト ラリアが購入した機体は PC－9／A と呼ばれてい る。ドイツ空軍が標的曳航用に購入した機体が PC－9Bで，そのエンジンを PT6A－68（1．274kW を 820 kW に減格）にしたのがPC－9Mk II。この PC－9Mk IIは，アメリカ空•海軍の合同基本航空機訓練システム（JPATS）計画で採用され，アメリ力軍の要求に応じた改修が加えられて，T－6A テキ サンIIとして装備が萑められている。

最新型がPC－9Mで，1997年から製造が始めら れた能力向上型であり，また主力生産型となって いる。PC－9の空力をPC－7に適用して作られたPC－ 7Mk II で使われた新技術がフィードバックされて おり，PC－7Mk II と同様の大型化されたドーサル・ フィンを持ち，緃安定性が向上されているととも に，操檤楦にかける必要な力か軽減された。また主翼付け根フェアリングも形状が改められており，低速時の操鏑性か改善されているとともに，失速速度も低下している。このPC－9M を基に，GPS支援用の慣性航法装置，HOTAS 操作概念，チヤ フ／フレア・ディスペンサー，ハニウェル製電子飛行計器システム（EFIS）などを装備したのが，スロ ベニア空軍向けのフドウルニク（アマツバメの意

味）である。フドウルニクは，機外搭載重量が1．250 kg に增かされており，その初号機は1999年5月に初飛行した。

Data	PC－G
全幅	10.19 m
全長	10.14 m
全高	3.26 m
主㑭面積	16.28 m
基本全備空歔重量	$1,725 \mathrm{~kg}$
最大離陸重量	$3,200 \mathrm{~kg}$（ U 類）$/ 2.350 \mathrm{~kg}$（ A 類）
エンジン	ブラット\&ホイットニー・カナダ $\text { PT } 6 \text { A- } 62(708 \mathrm{~kW}) \times 1$
機内燃料容量	518L
最大運用速度	320 kt
最大巡航速度	298 kt
海面上䒜率	$1,183 \mathrm{~m} / \mathrm{min}$
実用上昇限度	11.580 m
最大䏓続距離	860 nm
乗員	2名

[^0]
Ir エアバス・ヘリコプターズ（アエロスパシアル）Airbus Helicopters（Aérospatiale） SA341／342 ガゼル SA341／342 Gazelle

コクビット上部にビビアン照準システムを䧇着した，フランス陸軍のSA342M1（Photo：Alex van Noye）

SA342L1のフランス陸軍向け がSA342Mで，1990年代に入る とビビアン暗視サイトの装備も行 われた。SA342M では，照準器 をSFOM80に変更し，ミストラ ル空対空ミサイルを携行するよ うにした，SA342M／セルディッ クも作られ，後には照準器を T2000に更新している。このミス トラル携行型SA342Mは，HOT携行型から30機か改造されて，フ ランス陸軍に配備された。

ユーゴスラビアのSOKOでは， SA342L／L1／Hのライセンス生産を行い，「バルチザン」の名称で空軍が装備している。この機体 に，9M14（AST－3＂サガー＂）およ び9K32M ストレラ（AT－7＂グレ イル＂）対戦車ミサイル，ロケット弾等の武装を付け，M334サイト を装備した本格的な攻撃型が， SA342L／GAMA と呼ばれるも の。132機が作られたバルチザン

アルウエットIIの後緥として作られたタービン単発の軽へリコブターで，1967年の英仏合意に基 づいて両国で生産することになった3機のうちの1機（残る2機はビューマとリンクス）。試作機 SA340は1967年4月7日に初飛行し，通常のロー ター・システムを裴備していたが，量産に際しては主ローターをリジッド式に変更，反トルク・システ ムは通常のテイル・ローターに換えて，垂直安定板内にファンを埋め远んだ＂フェネストロン＂を使用 することとなった。ガゼルは，＂フェネストロン゙を装備した初の量産ヘリコブターでもある。
1969年にSA341ガぜルの名称が与えられ，エ ンジンもチュルボメカ・アスタズーII（ 268 kW ）か ら，大出力型のアスタスーIII（440kW）に変更された。最初の生產型はイギリス陸軍向けSA341B（ガ ぜルAH．1）と，フランス陸柬向けSA341Fで，ガ ゼルAH．1はロケット弹などを裴備する軽攻繋型 であった。ただ今日では，䘽测•索敵が主任䅂に変更され，武装を搭載することは稀になっている。 フランス空亚のSA341F も，武装としてGIAT M621 20mm機関砲を装備している。ガゼルAH． 1 は，1970年4月に初飛行している。
SA341FにAPX M397昼甽索敵サイトを付け， HOT 対戦車ミサイルの推行を可能にしたフラン ス陸而向けタイブがSA341Mで，40機がSA341F

から改修された。また別の60機にはM621 20 mm機圆砲をつけ，M334拡大サイトを装備する改良が施されており，この機体はSA341F／キャノンと呼ばれる。
SA341のエンジンをアスタズーXIV（ 640 kW ）と したのがSA342で，1973年5月11日に試作機が初飛行した。この最初の軍用型がSA342K（民開名称はSA342J）で简単な武装も携行でき，さらに HOT 対戦車ミサイルを主武装としたのがSA342 Lで，その総重量引き上げ型がSA342L1。いずれ も M397照準器を装備している。

Data	S43421 1
主ローター直径	10.50 m
全長	11.97 m
全高	3.19 m
回転円媻面瞔	86．6m
空虚重量	987 kg
最大㮩陸重量	$2,000 \mathrm{~kg}$
エンジン	チュルボメカ
	アスタズーXVM（649kW）×1
恕科容量	545L（機内）+200 L （機内増信）
最大速度	170kt
最大巡缶速度	140kt
海面上昇蚛	$390 \mathrm{~m} / \mathrm{min}$
ホパリンク高度限界	2，500m（IGE）
ホインス高面限見	1，585m（OGE）
	700 kg
最大竺紶距維	385 nm

ドイツ陸軍で使用されていた当時のBO105P。PAH－1の制式名称が付けられ，続いて改良型の BO105P1A も作られたが，制式名称は同じままであった（Photo：Alex van Noye）

1962年に西ドイツ（当時）のMBB か設計を開始 したタービン双発の軽ヘリコブターで，1967年2月16日に原型機が初飛行した。主ローターは4枚 ブレードで，リジッド式ローターの採用により胃返 りも可能という運動性を有する。この試作機 BO105Aは，アリソン250－C18（236kW）エンジ ンを装備したが，量㹍型BO105C ではバワーアッ ブ型の250C－20（298kW）になった。エンジンをさ らに出力増加型の $250-\mathrm{C} 20 \mathrm{~B}(313 \mathrm{~kW})$ としたの が，BO105CBである。

このBO105CBのドイツ陸雨向け型がBO105M で，素敵用として装備された。合わせて武装攻䌘型BO105Pが212機発注され，PAH－1として配備が行われている。PAH－1は，HOT 対㖅車ミサ イルを最大6発，胴体㑡面に携行する。照準サイト は，SFIM APX397安定式目祭捕捉•追跡照準器 をキャビン天井部に取り付けており，航法器材とし てはAN／ASN－128ドップラー航法装跭を装備し ている。この BO105CB の武装型は，ドイツ整再以外でも採用されており，スウェーデン鈝示の HKP9A はTOW 対戦車ミサイルを携行する。ま たスペイン陸軍の HA．15は，基本的にPAH－1と同じものである。

ドイッ陸軍では，PAH－1の近代化改修を実施し ており，まず第1段階として主ローター・ブレード の更新，洞温油冷却システムの改善，空気取入れ

口の改良，トランスミッション容量の増杊が行われ た。この改良改修型は，1991年から部隊への再引 き渡しが開始された。これがPAH－1A と呼ばれる もので，保有する全機が改修を終えた。またドイツ陸軍には夜開作戦能力を付与するPAH－1フェイ ス2か提窈されたが，採用には至らなかった。
本格的な武装ヘリコブターであるティーガー計画が運れたことから，現在はさらに第2段階の改良 が実施されており，デジタル式のHOT2対戦車ミ サイルの携行能力付与，天井装備型赤外線照準器 の装備，暗視ゴーグル対応改修などにより，夜開 の活動能力を高めることが考えられている。さら に，主ローター・マストおよびヘルメット装着型照準器の試験用にも，1機が改造されている。

またこれとは別に，PAH－1のうち54機を，ステ インガー空対空ミサイルを携行する，詙姵戦䦣型 に改造した。この機体がBSH とよばれるものだ が，通常はPAH－1A で総称されている。
PAH－1／－1Aは，HOT 対戦車ミサイルのみを携行するものだが，輸出用の武装型はミサイル以外 の兵器も搭載している。ロケット弾ポッド，機関砲 ボッドなどがその代表で，また照準装犆では， T177，APX34－25（レーザー測距装置付き），サー ブ・ヘリオなどから選択して，キャビン天井に付け ることが能である。

Data	PAH－1A
主ローター直径	9.84 m
全長	11.86 m
明体長	8.56 m
全高	3.02 m
	76.1 m
空虚重量	1.688 kg
維陸重量	2.380 kg （HOT $\times 6$ 措裁）
最大败郊重量	2.500 kg
エンジン	アリソン250－C20B（313kW）$\times 2$
败料䛗量	580L（䋱内）
最大速度	131kt
経滿巡航速度	110 kt
海面上昇率	$445 \mathrm{~m} / \mathrm{min}$
ホハハリンク高度叕界	3.200 m （IGE）
	2.100 m （OGE）
兵装	HOT対戦車ミサイル×6
航続距皦	350 nm （HOT $\times 6$ 装俑）
フェリー航統距㯙 550 nm	
保有数 アルバニア空軍：BO105M（2 機），BO105E－4（6機） バーレーン海軍：スーバー5（BO105CBS－4）（4幾） ブルネイ空軍：BO105CBS（5譏）千1海軍：UH－05（5 機） インドネシア海軍：NBO105CB（6㦰），NBO105S（3機発注中） イントネシアア陸軍：NBO105CB（6権）NBO105CBS（1機 レット空軍：BO105LSA－3（1檢） メキシコ海軍：スーバー 5（11 楼） スベイン陸軍：HA．15（28機，クルクアイに麦却予定）， HE．15A（9縜） スウェーデン・ヘリコブター軍：Hkp9A（19煖） トリニタートトハイゴ軍ヘリコブター部：BO105CBS－4（3掃） ウルグアイ㓌軍：BO105（28侧，スペイン险軍から入手予定	

[^0]: 保有数
 オーストラリア空軍：PC－9／A（64機） ブルガリア空軍：PC－9M（6 機） チャト空軍：PC－9（1楥） クロアチア空軍：PC－9M（17機） キブロス空軍：PC－9（1機） アイルランド空軍：PC－9M（7 機） メキシコ空軍：PC－9M（2 機） ミャンマー空軍：PC－9（10機） オマーン空軍：PC－9M（12機） サウジアラビア空軍：PC－9（47 機） スロベニア空軍：PC－9M（9機） スイス空軍：PC－9（14機） タイ空軍：BF19（22機）

